Berl R. Oakley

Professor
Irving S. Johnson Distinguished Professor
Primary office:
(785) 864-8170
7050 Haworth


Mitosis, gamma-tubulin function, cell cycle regulation and fungal secondary metabolites.

Research Description

We currently have two major research projects. The first is on γ-tubulin and its role in cell cycle regulation. This project is funded by an R01 grant from NIGMS. We are using the filamentous fungus Aspergillus nidulans as our experimental organism for this project.

My lab discovered γ-tubulin and helped to uncover its role in microtubule nucleation. More recent work with γ-tubulin mutants has revealed that γ-tubulin has an important but poorly understood role in mitotic regulation independent of its role in microtubule nucleation. We are now attempting to understand this role (or these roles).

One of our approaches has been to tag mitotic regulatory proteins with fluorescent proteins and observe them in living cells of γ-tubulin mutant strains. The rationale is that by understanding how γ-tubulin mutants alter the behavior of mitotic regulatory proteins, we can begin to understand the role(s) of γ-tubulin in mitotic regulation. In order to carry out this project in a timely fashion, we have developed a very efficient gene targeting system for A. nidulans. This has allowed us to tag nearly all of the known mitotic regulatory proteins in this organism. (As will be mentioned below, the technique itself is an important advance for the A. nidulans community and has consequences well beyond this project.) So far this approach has uncovered a surprising role for γ-tubulin in regulating the inactivation of the anaphase promoting complex/cyclosome in the G1 phase of the cell cycle. Recent work is turning up additional surprises and we are excited that this project will tell us a great deal about cell cycle regulation that will go well beyond the functions of γ-tubulin.

Our second project is to identify and characterize secondary metabolites from A. nidulans and the genes involved in their biosynthesis. Secondary metabolites are not essential for viability but are often used to compete with other organisms. The classic example, of course, is penicillin. The biological activities of secondary metabolites are often medically useful and about half of the known fungal secondary metabolites have activities that are potentially useful. There are, of course, side effects and other problems so that most never make it into the pharmacopoeia, but there are some very notable successes such as lovastatin, a compound produced by Aspergillus terreus.

The sequencing of the genomes of species of Aspergillus revealed that they have the potential (based on the number of polyketide synthase and non-ribosomal peptide synthetase genes in the genome) to produce many more secondary metabolites than were known. In addition, the genes that encode fungal secondary metabolite biosynthesis genes are generally clustered, such that, for example, all of the genes involved in penicillin biosynthesis are adjacent in the genome. The sequence of the A. nidulans genome revealed that this organism had almost 40 more secondary metabolism gene clusters than known secondary metabolites. The gene targeting procedure we have developed for A. nidulans allows us to delete genes or replace their promoters with ease. This should allow us, in principle, to obtain expression of cryptic secondary metabolism pathways and, through deletion analysis, define the genes responsible for the synthesis of each secondary metabolite.

We have recently been awarded a program project grant from the NIGMS to support this work. I am the overall PI and Dr. Clay Wang at the University of Southern California and Dr. Nancy Keller at the University of Wisconsin are the other PI's. Dr. Wang is a natural products chemist and Dr. Keller studies expression of secondary metabolism genes. This work is going very well. We have discovered five compounds new to science and at least a half dozen new to A. nidulans in the few months since the grant began. In cases where the compounds were known to exist, we have been able to determine their biosynthetic pathways for the first time. We have also made progress in understanding chromatin-level regulation of secondary metabolism genes. This approach promises to revolutionize natural products chemistry.

Teaching Interests

  • Cell biology
  • Genetics

Research Interests

  • Mitosis
  • Gamma-tubulin function
  • Cell cycle regulation
  • Fungal secondary metabolites

Selected Publications

Yeh, H. H, Ahuja, M., Chiang, Y. M, Oakley, C. E, Moore, S., Yoon, O., Hajovsky, H., Bok, J. W, Keller, N. P, Wang, C. C, & Oakley, B. R (2016). Resistance Gene-Guided Genome Mining: Serial Promoter Exchanges in Aspergillus nidulans Reveal the Biosynthetic Pathway for Fellutamide B, a Proteasome Inhibitor. ACS chemical biology, 11(8), 2275-84. DOI:10.1021/acschembio.6b00213

Basha, A., Basha, F., Ali, S. K, Hanson, P. R, Oakley, B. R, Hajovsky, H., & Mitscher, L. A (2016). Onychomycosis and its Chemotherapy. Current medicinal chemistry, 23(16), 1609-24.

Chiang, Y. M, Ahuja, M., Oakley, C. E, Entwistle, R., Asokan, A., Zutz, C., Wang, C. C, & Oakley, B. R (2016). Development of Genetic Dereplication Strains in Aspergillus nidulans Results in the Discovery of Aspercryptin. Angewandte Chemie (International ed. in English), 55(5), 1662-5. DOI:10.1002/anie.201507097

Wang, B., Li, K., Jin, M., Qiu, R., Liu, B., Oakley, B. R, & Xiang, X. (2015). The Aspergillus nidulans bimC4 mutation provides an excellent tool for identification of kinesin-14 inhibitors. Fungal genetics and biology : FG & B, 82, 51-5. DOI:10.1016/j.fgb.2015.06.005

Oakley, B. R, Paolillo, V., & Zheng, Y. (2015). γ-Tubulin complexes in microtubule nucleation and beyond. Molecular biology of the cell, 26(17), 2957-62. DOI:10.1091/mbc.E14-11-1514

Guo, C., Sun, W., Bruno, K. S, Oakley, B., Keller, N. P, & Wang, C. C. C. (2015). Spatial regulation of a common precursor from two distinct genes generates metabolite diversity. Chemical Science, 6, 751-760.

Paranjape, S. R, Riley, A. P, Somoza, A. D, Oakley, C. E, Wang, C. C, Prisinzano, T. E, Oakley, B. R, & Gamblin, T. C (2015). Azaphilones inhibit tau aggregation and dissolve tau aggregates in vitro. ACS chemical neuroscience, 6(5), 751-60. DOI:10.1021/acschemneuro.5b00013

Edgerton, H., Paolillo, V., & Oakley, B. R (2015). Spatial regulation of the spindle assembly checkpoint and anaphase-promoting complex in Aspergillus nidulans. Molecular microbiology, 95(3), 442-57. DOI:10.1111/mmi.12871

Chiang, Y., Wang, C. C. C., & Oakley, B. R. (2014). Analyzing fungal secondary metabolite genes and gene clusters. In A. Osbourn, R. Goss, & G. Carter (Eds.), Natural Products: Discourse, Diversity & Design (pp. 175-193). Hoboken, NJ: John Wiley & Sons.

Edgerton, H., Paolillo, V., & Oakley, B. R (2014). Spatial Regulation of the Spindle Assembly Checkpoint and Anaphase Promoting Complex in Aspergillus nidulans. Molecular Microbiology, 95, 442-57. DOI:10.1111/mmi.12871

Liu, T., Sanchez, J. F., Chiang, Y. M., Oakley, B. R., & Wang, C. C. C. (2014). Rational domain swaps reveal insights about chain length control by ketosynthase domains in fungal non-reducing polyketide synthases. Organic Letters, 16(6), 1676-1679. DOI:10.1021/ol5003384

Yaegashi, J., Oakley, B. R., & Wang, C. C. C. (2014). Recent advances in genome mining of secondary metabolite biosynthetic gene clusters and the development of heterologous expression systems in Aspergillus nidulans. Journal of industrial microbiology & biotechnology, 41(2), 433-442. DOI:10.1007/s10295-013-1386-z

Paranjape, S. R, Chiang, Y. M, Sanchez, J. F, Entwistle, R., Wang, C. C, Oakley, B. R, & Gamblin, T. C (2014). Inhibition of Tau aggregation by three Aspergillus nidulans secondary metabolites: 2,ω-dihydroxyemodin, asperthecin, and asperbenzaldehyde. Planta medica, 80(1), 77-85. DOI:10.1055/s-0033-1360180

Oakley, B. R. (2013). Aspergillus nidulans. In S. Maloy & K. Hughes (Eds.), Encyclopedia of Genetics(2ndnd ed.) (pp. 212-215). San Diego, CA: Academic Press.

Yaegashi, J., Praseuth, M. B., Tyan, S. -W., Sanchez, J. F., Entwistle, R., Chiang, Y. -M., Oakley, B. R., & Wang, C. C. C. (2013). Molecular genetic characterization of the biosynthesis cluster of a prenylated isoindolinone alkaloid aspernidine A in Aspergillus nidulans. Organic Letters, 15(11), 2862-2865. DOI:10.1021/ol401187b

Chiang, Y. M., Oakley, C. E., Ahuja, M., Entwistle, R., Schultz, A., Chang, S. L., Sung, C. T., Wang, C. C., & Oakley, B. R. (2013). An efficient system for heterologous expression of secondary metabolite genes in Aspergillus nidulans. Journal of the American Chemical Society, 135(20), 7720-7731. DOI:10.1021/ja401945a

Yeh, H. H, Chang, S. L, Chiang, Y. M, Bruno, K. S, Oakley, B. R, Wu, T. K, & Wang, C. C (2013). Engineering fungal nonreducing polyketide synthase by heterologous expression and domain swapping. Organic letters, 15(4), 756-9. DOI:10.1021/ol303328t

Basha, A., Basha, F., Ali, S. K., Hanson, P. R., Mitscher, L. A., & Oakley, B. R. (2013). Recent progress in the chemotherapy of human fungal diseases. Emphasis on 1,3-β-glucan synthase and chitin synthase inhibitors. Current medicinal chemistry, 20(38), 4859-4887.

Oakley, C. Elizabeth, Edgerton-Morgan, H., & Oakley, B. R. (2012). Tools for Manipulation of Secondary Metabolism Pathways: Rapid Promoter Replacements and Gene Deletions in Aspergillus nidulans. In N. Keller & G. Turner (Eds.), Methods in Molecular Biology (Vol. 944, pp. 143-161). Clifton, NJ: Humana Press.

Sanchez, J. F., Entwistle, R., Corcoran, D., Oakley, B. R., & Wang, C. C. C. (2012). Identification and molecular genetic analysis of the cichorine cluster in Aspergillus nidulans. Med. Chem. Commun., 3, 997-1002.

Ahuja, M., Chiang, Y., Chang, S., Praseuth, M. B., Entwistle, R., Sanchez, J. F., Lo, H., Oakley, B. R., & Wang, C. C. C. (2012). Illuminating the diversity of aromatic polyketide synthases in Aspergillus nidulans. J. Am. Chem. Soc., 134, 8212-8221.

Yeh, H., Chiang, Y., Entwistle, R., Ahuja, M., Lee, K., Bruno, K., Wu, T., Oakley, B. R., & Wang, C. C. C. (2012). Molecular genetic analysis reveals that a nonribosomal peptide synthase-like (NRPS-like) gene in Aspergillus nidulans is responsible for microperfuranone biosynthesis. Appl. Microbiol. Biotechnol., 96, 739-748.

Guo, C., Knox, B., Chiang, Y., Lo, H., Sanchez, J., Lee, K., Oakley, B., Bruno, K., & Wang, C. (2012). Molecular genetic characterization of a cluster in A. terreus for biosynthesis of the meroterpenoid terretonin. Org. Lett., 14, 5684-5687.

Soukup, A. A., Chiang, Y., Bok, J. Woo, Reyes-Dominguez, Y., Oakley, B. R., Wang, C. C. C., Strauss, J., & Keller, N. P. (2012). Overexpression of the Aspergillus nidulans histone 4 acetyltransferase EseA increases activation of secondary metabolite production. Mol. Microbiol., 86, 314-330.

Somoza, A. D., Lee, K., Chiang, Y., Oakley, B. R., & Wang, C. C. C. (2012). Reengineering an azaphilone biosynthesis pathway in Aspergillus nidulans to create lipoxygenase inhibitiors. Org. Lett., 14, 972-975.

Taheri-Talesh, N., Xiong, Y., & Oakley, B. R. (2012). The functions of myosin II and myosin V homologs in tip growth and septation in Aspergillus nidulans. PLoS One, 7, e31218.

Lo, H., Entwistle, R., Guo, C., Ahuja, M., Szewczyk, E., Hung, J., Chiang, Y., Oakley, B. R., & Wang, C. C. C. (2012). Two separate gene clusters encode the biosynthetic pathway for the meroterpenoids, austinol and dehydroaustinol in Aspergillus nidulans. J. Am. Chem. Soc., 134, 4709-4720.

Edgerton-Morgan, H., & Oakley, B. R. (2012). γ-Tubulin plays a key role in inactivating APC/CCdh1 at the G1/S boundary. J. Cell Biol., 198, 785-791.

Giles, S. S., Soukup, A. A., Lauer, C., Shaaban, M., Lin, A., Oakley, B. R., Wang, C. C. C., & Keller, N. P. (2011). Cryptic Aspergillus nidulans antimicrobials. Appl. Environ. Microbiol., 77, 3669-3675.

Liu, T., Chiang, Y., Somoza, A. D., Oakley, B. R., & Wang, C. C. C. (2011). Engineering of an 'unnatural' natural product by swapping polyketide synthase domains in Aspergillus nidulans. J. Am. Chem. Soc., 133, 13314-13316.

Sanchez, J. F., Entwistle, R., Hung, J., Yaegashi, J., Jain, S., Chiang, Y., Wang, C. C. C., & Oakley, B. R. (2011). Genome-based deletion analysis uncovers the prenyl xanthone biosynthesis pathway in Aspergillus nidulans. J. Am. Chem. Soc., 133, 4010-4017.

Szewczyk, E., & Oakley, B. R. (2011). Microtubule dynamics in mitosis in Aspergillus nidulans. Fungal Genet. Biol., 48, 998-999.

Chiang, Y., Chang, S., Oakley, B. R., & Wang, C. C. C. (2011). Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms. Current Opinion in Chemical Biology, 15, 137-143.

Xiang, X., & Oakley, B. R. (2010). The Cytoskeleton in Filamentous Fungi. In K. Borkovich & D. Ebbole (Eds.), Cellular and Molecular Biology of Filamentous Fungi (pp. 209-223). ASM Press.

Chiang, Y., Szewczyk, E., Davidson, A. D., Entwistle, R., Keller, N. P., Wang, C. C. C., & Oakley, B. R. (2010). Characterization of the Aspergillus nidulans monodictyphenone gene cluster. Appl. Environ. Microbiol., 76, 2067-2074.

Sanchez, J. F., Chiang, Y., Szewczyk, E., Davidson, A. D., Ahuja, M., Oakley, C. Elizabeth, Bok, J. Woo, Keller, N., Oakley, B. R., & Wang, C. C. C. (2010). Molecular genetic analysis of the orsellinic acid/F-9775 biosynthetic gene cluster in Aspergillus nidulans. Mol. Biosyst., 6, 587-593.

Chiang, Y., Chang, S., Oakley, B. R., & Wang, C. C. C. (2010). Recent advances in awakening silent biosynthetic gene clusters in microorganisms. Curr. Opin. Chem. Biol., 15, 1-7.

Palmer, J. M., Mallaredy, S., Perry, D. W., Sanchez, J. F., Thiesen, J. M., Szewczyk, E., Oakley, B. R., Wang, C. C. C., Keller, N. P., & Mirabito, P. M. (2010). Telomere position effect is regulated by heterochromatin associated proteins and NkuA in Aspergillus nidulans. Microbiology, 156, 3522-3531.

Chiang, Y., Oakley, B. R., Keller, N. P., & Wang, C. C. C. (2010). Unraveling polyketide synthesis in members of the genus Aspergillus. Appl. Microbiol. Biotechnol., 86, 1719-1736.

Nayak, T., Edgerton-Morgan, H., Horio, T., Xiong, Y., De Souza, C. P., Osmani, S. A., & Oakley, B. R. (2010). γ-Tubulin regulates the anaphase-promoting complex/cyclosome during interphase. J. Cell Biol., 190, 317-330.

Xiong, Y., & Oakley, B. R. (2009). In vivo analysis of the functions of γ-tubulin complex proteins. J. Cell Sci., 122, 4218-4227.

Chiang, Y., Szewczyk, E., Davidson, A. D., Keller, N., Oakley, B. R., & Wang, C. C. C. (2009). A gene cluster containing two fungal polyketide synthases encodes the biosynthetic pathway for a polyketide, asperfuranone, in Aspergillus nidulans. J. Am. Chem. Soc., 131, 2965-2970.

Bok, J. Woo, Chiang, Y., Szewczyk, E., Reyes-Dominguez, Y., Davidson, A. D., Sanchez, J. F., Lo, H., Watanabe, K., Strauss, J., Oakley, B. R., Wang, C. C. C., & Keller, N. P. (2009). Chromatin-level regulation of biosynthetic gene clusters. Nat. Chem. Biol., 5, 462-464.

De Souza, C. P., Hashmi, S. B., Nayak, T., Oakley, B., & Osmani, S. A. (2009). Mlp1 acts as a scaffold to localize Mad1 in between reforming telophase nuclei in Aspergillus nidulans. Mol. Biol. Cell, 20, 2146-2159.

Kim, J., Zeng, J. Tracy, Nayak, T., Shao, R., Huang, A., Oakley, B. R., & Liu, B. (2009). Timely septation requires SNAD-dependent spindle pole body localization of the septation initiation network components in the filamentous fungus Aspergillus nidulans. Mol. Biol. Cell., 20, 2874-2884.

Szewczyk, E., Chiang, Y., Oakley, C. Elizabeth, Davidson, A., Wang, C. C. C., & Oakley, B. R. (2008). Identification and characterization of the asperthecin gene cluster of Aspergillus nidulans. Appl. Environ. Microbiol., 74, 7607-7612.

Chiang, Y., Szewczyk, E., Nayak, T., Davidson, A. D., Sanchez, J. F., Lo, H., Simityan, H., Kuo, E., Praseuth, A., Watanabe, K., Oakley, B. R., & Wang, C. C. C. (2008). Molecular genetic mining of the Aspergillus secondary metabolome: Discovery of the emericellamide biosynthetic pathway. Chem. Biol., 15, 527-532.

Wong, K. Ho, Todd, R. B., Oakley, B. R., Oakley, C. E., Hynes, M. J., & Davis, M. A. (2008). Sumoylation in Aspergillus nidulans: sumO inactivation, overexpression and live-cell imaging. Fungal Genet. Biol., 45, 728-737.

Wortman, J. R., Gilsenan, J. M., Joardar, V., Deegan, J., Clutterbuck, J., Andersen, M. R., Archer, D., Bencina, M., Braus, G., Coutinho, P., Dohren, H. V., Doonan, J., Driessen, A. J., Durek, P., Espeso, E., Fekete, E., Flipphi, M., Estrada, C. G., Geysens, S., Goldman, G., de Groot, P. W., Hansen, K., Harris, S. D., Heinekamp, T., Helmstaedt, K., Henrissat, B., Hofmann, G., Homan, T., Horio, T., Horiuchi, H., James, S., Jones, M., Karaffa, L., Karanyi, Z., Kato, M., Keller, N., Kelly, D. E., Kiel, J. A., Kim, J. M., van der Klei, I. J., Klis, F. M., Kovalchuk, A., Krasevec, N., Kubicek, C. P., Liu, B., Maccabe, A., Meyer, V., Mirabito, P., Miskei, M., Mos, M., Mullins, J., Nelson, D. R., Nielsen, J., Oakley, B. R., Osmani, S. A., Pakula, T., Paszewski, A., Paulsen, I., Pilsyk, S., Pocsi, I., Punt, P. J., Ram, A. F., Ren, Q., Robellet, X., Robson, G., Seiboth, B., van Solingen, P., Specht, T., Sun, J., Taheri-Talesh, N., Takeshita, N., Ussery, D., Vankuyk, P. A., Visser, H., van de Vondervoort, P. J., de Vries, R. P., Walton, J., Xiang, X., Xiong, Y., Zeng, A. P., Brandt, B. W., Cornell, M. J., van den Hondel, C. A., Visser, J., Oliver, S. G., & Turner, G. (2008). The 2008 update of the Aspergillus nidulans genome annotation: A community effort. Fungal Genet. Biol., 46, S2-S13.

Taheri-Talesh, N., Horio, T., Araujo-Bazán, L., Dou, X., Espeso, E. A., Peñalva, M. A., Osmani, S. A., & Oakley, B. R. (2008). The tip growth apparatus of Aspergillus nidulans. Mol. Bio. Cell, 19, 1439-1449.

Osmani, S. A., Liu, H., Hynes, M. J., & Oakley, B. R. (2007). Advances in Gene Manipulations Using Aspergillus nidulans. In G. H. Goldman & S. A. Osmani (Eds.), The Aspergilli Genomics, Medical Aspects, Biotechnology and Research Methods (pp. 493-511). Boca Raton, London, New York: CRC Press.

Oakley, B. R., & Xiang, X. (2007). Fluorescent Labels for Intracellular Structures and Organelles. In G. H. Goldman & S. A. Osmani (Eds.), The Aspergilli Genomics, Medical Aspects, Biotechnology and Research Methods (pp. 513-525). Boca Raton, London, New York: CRC Press.

Nayak, T., Szewczyk, E., Oakley, C. E., Osmani, A., Ukil, L., Murray, S. L., Hynes, M. J., Osmani, S. A., & Oakley, B. R. (2006). A versatile and efficient gene targeting system for Aspergillus nidulans. Genetics, 172, 1557-1566.

Szewczyk, E., Nayak, T., Oakley, C. E., Edgerton, H., Xiong, Y., Taheri-Talesh, N., Osmani, S. A., & Oakley, B. R. (2006). Fusion PCR and gene targeting in Aspergillus nidulans. Nature Protocols, 1, 3111-3120.

Osmani, A. H., Oakley, B. R., & Oakley, S. A. (2006). Identification and analyisis of essential genes using the heterokaryon rescue technique in Aspergillus nidulans. Nature Protocols, 1, 2517–2526.

Li, S., Oakley, C. Elizabeth, Chen, G., Han, X., Oakley, B. R., & Xiang, X. (2005). Cytoplasmic dynein’s mitotic spindle pole localization requires a functional anaphase-promoting complex, γ-tubulin, and NUDF/LIS1 in Aspergillus nidulans. Mol. Biol. Cell, 16, 3591-3605.

Galagan, J. E., Calvo, S. E., Cuomo, C., Ma, L., Wortman, J., Batzoglou, S., Lee, S., Basturkmen, M., Spevak, C. C., Clutterbuck, J., Kapitonov, V., Jurka, J., Scazzocchio, C., Farman, M., Butler, J., Purcell, S., Harris, S., Braus, G., Draht, O., Busch, S., D'Enfert, C., Bouchier, C., Goldman, G., Bell-Pedersen, D., Grifiths-Jones, S., Doonan, J. H., Yu, J., Vienken, K., Pain, A., Freitag, M., Selker, E. U., Archer, D. B., Penalva, M. A., Oakley, B. R., Momany, M., Tanaka, T., Kumagai, T., Asai, K., Machida, M., Nierman, W. C., Denning, D. W., Caddick, M., Hynes, M., Paoletti, M., Fischer, R., Miller, B., Dyer, P., Sachs, M. S., Osmani, S. A., & Birren, B. (2005). Sequencing and comparative analysis of Aspergillus nidulans. Nature, 438, 1105-1115.

Horio, T., & Oakley, B. R. (2005). The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans. Mol. Biol. Cell, 16, 918-926.

Su, W., Li, S., Oakley, B. R., & Xiang, X. (2004). Live cell dual-color imaging of nuclear division and mitotic spindle elongation in Aspergillus nidulans. Eukaryotic Cell, 3, 553-556.

Oakley, B. R. (2004). Tubulins in Aspergillus nidulans. Fungal Genet. Biol., 41, 420-427.

Prigozhina, N. L., Oakley, C. E., Lewis, A. M., Nayak, T., Osmani, S. A., & Oakley, B. R. (2004). γ-Tubulin Plays an Essential Role in the Coordination of Mitotic Events. Mol. Biol. Cell, 15, 1374-1386.

Horio, T., & Oakley, B. R. (2003). Expression of Arabidopsis thaliana γ-tubulin in fission yeast reveals conserved and novel functions of γ-tubulin. Plant Physiol., 133, 1926-1934.

Job, D., Valiron, O., & Oakley, B. (2003). Microtubule nucleation. Curr. Opin. Cell Biol., 15, 111-117.

Straube, A., Brill, M., Oakley, B. R., Horio, T., & Steinberg, G. (2003). Microtubule organization requires cell-cycle dependent nucleation at dispersed cytoplasmic sites, polar and perinuclear MTOCs in the plant pathogen Ustilago maydis. Mol. Biol. Cell, 14, 642-657.

Ovechkina, Y., Maddox, P., Oakley, C. E., Xiang, X., Osmani, S., Salmon, E. D., & Oakley, B. R. (2003). Spindle formation in Aspergillus is coupled to tubulin movement into the nucleus. Mol. Biol. Cell, 14, 2192-2200.

Osmani, A. H., Davies, J., Oakley, C. E., Oakley, B. R., & Osmani, S. A. (2003). TINA interacts with the NIMA kinase in Aspergillus nidulans and negatively regulates astral microtubules during metaphase arrest. Mol. Biol. Cell, 14, 3169-3179.

Ovechkina, Y., & Oakley, B. R. (2001). "Gamma tubulin in plant cells". (pp. 195-212). San Diego: Academic Press.

Oakley, B. R., Oakley, C. E., Yoon, Y., & Jung, M. K. (2001). γ Tubulin is a component of the spindle pole body that is essential for microtubule function in Aspergillus nidulans. In J. G. Gall & J. Richard McIntosh (Eds.), Landmark Papers in Cell Biology (pp. 517-529). Cold Spring Harbor, NY: The American Society for Cell Biology and The Cold Spring Harbor Laboratory Press.

Jung, M. Katherine, Prigozhina, N., Oakley, C. E., Nogales, E., & Oakley, B. R. (2001). Alanine-scanning mutagenesis of Aspergillus γ-tubulin yields diverse and novel phenotypes. Mol. Biol. Cell, 12, 2119-2136.

Prigozhina, N. L., Walker, R. A., Oakley, C. E., & Oakley, B. R. (2001). γ-Tubulin and the C-terminal motor domain kinesin-like protein, KLPA, function in the establishment of spindle bipolarity in Aspergillus nidulans. Mol. Biol. Cell, 12, 3161-3174.

Oakley, B. R. (2000). γ-Tubulin. In R. Palazzo & G. Schatten (Eds.), The Centrosome in Reproduction and Cell Replication (pp. 27-54). San Diego: Academic Press.

Paluh, J. L., Nogales, E., Oakley, B. R., McDonald, K., Pidoux, A., & Cande, W. Z. (2000). A mutation in γ-tubulin alters microtubule dynamics and organization and is synthetically lethal with the kinesin-like protein Pkl1p. Mol. Biol. Cell, 11, 1225-1239.

Oakley, B. R. (2000). An abundance of tubulins. Trends Cell Biol., 10, 537-542.

Khodjakov, A., Cole, R. W., Oakley, B. R., & Rieder, C. L. (2000). Centrosome independent mitotic spindle formation in vertebrates. Curr. Biol., 10, 59-67.

Jung, M. Katherine, Ovechkina, Y., Prigozhina, N., Oakley, C. E., & Oakley, B. R. (2000). The use of beta-D-glucanase as a substitute for Novozym 234 in immunofluorescence and protoplasting. Fungal Genetics Newsletter, 47, 65-66.

Wise, D. O., Krahe, R., & Oakley, B. R. (2000). The γ-tubulin gene family in humans. Genomics, 67, 164-170.

Oakley, B. R. (1999). γ-Tubulin. In T. Kreis & R. Vale (Eds.), Guidebook to the Cytoskeletal and Motor Proteins(2nd ed.) (pp. 271-275). New York: A Sambrook & Tooze Publication at Oxford University Press.

Ovechkina, Y. Y., Pettit, R. K., Cichaz, Z. A., Pettit, G. R., & Oakley, B. R. (1999). Unusual antimicrotubule activity of the antifungal agent spongistatin 1. Antimicrob. Agents Chemother., 43, 1993-1999.

Oakley, B. R., & Akkari, Y. N. (1999). γ-Tubulin at ten: Progress and prospects. Cell Struct. Funct., 24, 365-372.

Oakley, B. R. (1998). "Methods for isolating and analyzing mitotic mutants in Aspergillus nidulans". (pp. 348-361). San Diego: Academic Press.

Jung, M. Katherine, May, G. S., & Oakley, B. R. (1998). Mitosis in wild-type and β tubulin mutant strains of Aspergillus nidulans. Fungal Genet. Biol., 24, 146-160.

Akashi, T., Yoon, Y., & Oakley, B. R. (1997). Characterization of γ-tubulin complexes in Aspergillus nidulans and detection of putative γ-tubulin interacting proteins. Cell Motil. Cytoskel., 37, 149-158.

Wilson, P. G., Zheng, Y., Oakley, C. E., Oakley, B. R., Borisy, G. G., & Fuller, M. T. (1997). Differential expression of two γ-tubulin isoforms during gametogenesis and development in Drosophila. Dev. Biol., 184, 207-221.

Martin, M., Osmani, S. A., & Oakley, B. R. (1997). The role of γ-tubulin in mitotic spindle formation and cell cycle progression in Aspergillus nidulans. J. Cell Sci., 110, 623-633.

Ding, R., West, R. R., Morphew, M., Oakley, B. R., & McIntosh, J. R. (1997). The spindle pole body of Schizosaccharomyces pombe enters and leaves the nuclear envelope as the cell cycle proceeds. Mol. Biol. Cell, 8, 1461-1479.

Oakley, B. R. (1995). A nice ring to the centrosome. Nature, 378, 555-556.

Yoon, Y., & Oakley, B. R. (1995). Purification and characterization of assembly-competent tubulin from Aspergillus nidulans. Biochemistry, 34, 6373-6381.

Oakley, B. R., & Oakley, C. E. (1995). Tubulin and microtubules. Scientific American SCIENCE & MEDICINE, 2, 58-67.

Oakley, B. R. (1995). γ-Tubulin and the fungal microtubule cytoskeleton. Can. J. Bot., 73(Suppl. 1), S352-S358.

Horio, T., & Oakley, B. R. (1994). Human γ-tubulin functions in fission yeast. J. Cell Biol., 126, 1465-1473.

Oakley, B. R., & Osmani, S. A. (1993). Cell cycle analysis using the filamentous fungus Aspergillus nidulans. In P. Fantes & R. Brooks (Eds.), The Cell Cycle: A Practical Approach (pp. 127-142). Oxford: IRL Press at Oxford University Press.

Oakley, B. R. (1993). γ tubulin. In J. Hyams & C. Lloyd (Eds.), Microtubules (pp. 33-45). New York: Wiley-Liss.

Oakley, B. R. (1993). γ-tubulin. In T. Kreis & R. Vale (Eds.), Guidebook to the Cytoskeletal and Motor Proteins (pp. 130-131). Oxford and New York: Oxford University Press.

Jung, M. Katherine, Wilder, I. B., & Oakley, B. R. (1992). Amino acid alterations in the benA (β-tubulin) gene of Aspergillus nidulans that confer benomyl resistance. Cell Motil. Cytoskel., 22, 170-174.

Oakley, B. R. (1992). γ tubulin: the microtubule organizer? Trends Cell Biol., 2, 1-5.

Osmani, S. A., & Oakley, B. R. (1991). Cell cycle and tubulin mutations in filamentous fungi. In J. Bennett & L. Lasure (Eds.), More Gene Manipulations in Fungi (pp. 107-125). San Diego, CA: Academic Press.

Horio, T., Uzawa, S., Jung, M. K., Oakley, B. R., Tanaka, K., & Yanagida, M. (1991). The fission yeast γ-tubulin is essential for mitosis and is localized at two different microtubule organizing centers. J. Cell Sci., 99, 693-700.

Zheng, Y., Jung, M. K., & Oakley, B. R. (1991). γ-tubulin is present in Drosophila melanogaster and Homo sapiens and is associated with the centrosome. Cell, 65, 817-823.

Jung, M. Katherine, & Oakley, B. R. (1990). Identification of amino acid substitutions in the benA, β-tubulin, gene of Aspergillus nidulans that confer thiabendazole resistance and benomyl supersensitivity. Cell Motil. Cytoskel., 17, 87-94.

Goettel, M. S., St. Leger, R. J. S., Bhairi, S., Jung, M. K., Oakley, B. R., Roberts, D. W., & Staples, R. C. (1990). Pathogenicity and growth of Metarhizium anisopliae stably transformed to benomyl resistance. Curr. Genet., 17, 129-132.

Oakley, B. R., Oakley, C. E., Yoon, Y., & Jung, M. K. (1990). γ tubulin is a component of the spindle-pole-body that is essential for microtubule function in Aspergillus nidulans. Cell, 61, 1289-1301.

Oakley, C. Elizabeth, & Oakley, B. R. (1989). Identification of γ-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature, 338, 662-664.

Dunne, P. W., & Oakley, B. R. (1988). Mitotic gene conversion, reciprocal recombination and gene replacement at the benA, β-tubulin, locus of Aspergillus nidulans. Mol. Gen. Genet., 213, 339-345.

Oakley, C. Elizabeth, Weil, C. F., Kretz, P. L., & Oakley, B. R. (1987). Cloning of the riboB locus of Aspergillus nidulans. Gene, 53, 293-298.

Oakley, B. R., Rinehart, J. R., Mitchell, B. L., Oakley, C. E., Carmona, C., Gray, G. L., & May, G. S. (1987). Cloning, mapping and molecular analysis of the pyrG (orotidine-5'-phosphate decarboxylase) gene of Aspergillus nidulans. Gene, 61, 385-399.

Oakley, B. R., Oakley, C. E., & Rinehart, J. R. (1987). Conditionally lethal tubA, α-tubulin mutations of Aspergillus nidulans. Mol. Gen. Genet., 208, 135-144.

Weil, C. F., Oakley, C. E., & Oakley, B. R. (1986). Isolation of mip (microtubule interacting protein) mutations of Aspergillus nidulans. Mol. Cell. Biol., 6, 2963-2968.

Oakley, B. R. (1985). The molecular biology of microtubules in Aspergillus. In W. Timberlake (Ed.), Molecular Genetics of Filamentous Fungi (pp. 225-238). New York: Alan R. Liss, Inc.

Oakley, B. R., Oakley, C. E., Kniepkamp, K. S., & Rinehart, J. E. (1985). Isolation and characterization of cold-sensitive mutations at the benA, β-tubulin, locus of Aspergillus nidulans. Mol. Gen. Genet., 201, 56-64.

Oakley, B. R. (1985). Microtubule Mutants. Can. J. Biochem. Cell Biol., 63, 479-488.

Oakley, B. R., & Rinehart, J. E. (1985). Mitochondria and nuclei move by different mechanisms in Aspergillus nidulans. J. Cell Biol., 101, 2392-2397.

Morris, N. Ronald, Sheir-Neiss, G., & Oakley, B. R. (1983). The biochemical genetics of mitosis in Aspergillus nidulans. In P. Cappuccinelli & N. R. Morris (Eds.), Microtubules in Microorganisms (pp. 257-273). New York: Marcel Dekker, Inc.

Oakley, B. R., & Morris, N. R. (1983). A mutation in Aspergillus nidulans that blocks the transition from interphase to prophase. J. Cell Biol., 96, 1155-1158.

Oakley, B. R. (1983). Conditionally lethal tubulin mutations of Aspergillus nidulans. J. Submicrosc. Cytol., 15, 363-366.

Oakley, B. R., & Santore, U. J. (1982). Cryptophyceae: Introduction and bibliography. In J. R. Rosowski & B. C. Parker (Eds.), Selected Papers in Phycology II (pp. 682-686). Lincoln: University of Nebraska Press.

Morris, N. Ronald, Kirsch, D. R., & Oakley, B. R. (1982). Molecular and genetic methods for studying mitosis and spindle proteins in Aspergillus nidulans. In L. Wilson (Ed.), The Cytoskeleton Part B. Biological Systems and In Vitro Models (pp. 107-130). New York: Academic Press.

Oakley, B. R. (1981). Mitotic mutants. In A. M. Zimmerman & A. Forer (Eds.), Mitosis/Cytokinesis (pp. 181-196). New York: Academic Press.

Oakley, B. R., & Morris, N. R. (1981). A β-tubulin mutation in Aspergillus nidulans that blocks microtubule function without blocking assembly. Cell, 24, 837-845.

Oakley, B. R., Kirsch, D. R., & Morris, N. R. (1980). A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal. Biochem., 105, 361-363.

Oakley, B. R., & Morris, N. R. (1980). Nuclear movement is β-tubulin dependent in Aspergillus nidulans. Cell, 19, 255-262.

Oakley, B. R., & Dodge, J. D. (1979). Evidence for a double-helically coiled toroidal chromonema in the dinoflagellate chromosome. Chromosoma, 70, 277-291.

Oakley, B. R., & Taylor, F. J. R. (1978). Evidence for a new type of endosymbiotic organization in a population of the ciliate Mesodinium rubrum from British Columbia. Biosystems, 10, 361-369.

Oakley, B. R. (1978). Mitotic spindle formation in Cryptomonas (Cryptophyceae). Protoplasma, 95, 333-346.

Oakley, B. R. (1978). Some advantages and limitations of mitosis as a phylogenetic criterion. Biosystems, 10, 59-64.

Oakley, B. R., & Heath, I. B. (1978). The arrangement of microtubules in serially sectioned spindles of the alga Cryptomonas. J. Cell Sci., 31, 53-70.

Oakley, B. R., & Bisalputra, T. (1977). Mitosis and cell division in Cryptomonas (Cryptophyceae). Can. J. Bot., 55, 2789-2800.

Oakley, B. R., & Dodge, J. D. (1977). Mitosis and cell division in the dinoflagellate Amphidinium carterae. Cytobios, 17, 35-46.

Oakley, B. R., & Dodge, J. D. (1976). Ultrastructure of mitosis in Chroomonas salina (Cryptophyceae). Protoplasma, 88, 241-254.

Bisalputra, T., Oakley, B. R., Walker, D. C., & Shields, C. M. (1975). Microtubular complexes in blue-green algae. Protoplasma, 86, 19-28.

Oakley, B. R., & Dodge, J. D. (1974). Kinetochores associated with the nuclear envelope in the mitosis of a dinoflagellate. J. Cell Biol., 63, 322-325.

Oakley, B. R., & Dodge, J. D. (1974). Mitosis in the Cryptophyceae. Nature, 244, 521-522.

Oakley, B. R., & Dodge, J. D. (1974). The ultrastructure and cytochemistry of microbodies in Porphyridium. Protoplasma, 80, 233-244.

» Show All Publications

Search PubMed for articles by Berl R. Oakley.


Home to 50+ departments, centers, and programs, the School of the Arts, and the School of Public Affairs and Administration
KU offers courses in 40 languages
No. 1 ranking in city management and urban policy —U.S. News and World Report
One of 34 U.S. public institutions in the prestigious Association of American Universities
26 prestigious Rhodes Scholars — more than all other Kansas colleges combined
Nearly $290 million in financial aid annually
44 nationally ranked graduate programs.
—U.S. News & World Report
Top 50 nationwide for size of library collection.
—ALA
23rd nationwide for service to veterans —"Best for Vets," Military Times
KU Today